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   Abstract

   A design-oriented analysis capability for aircraft fuselage structures that utilizes equivalent plate methodology is
described.  This new capability is implemented as an addition to the existing wing analysis procedure in the
Equivalent Laminated Plate Solution (ELAPS) computer code.  The wing and fuselage analyses are combined to
model entire airframes.    
   The paper focuses on the fuselage model definition, the associated analytical formulation and the approach used to
couple the wing and fuselage analyses.  The modeling approach used to minimize the amount of preparation of input
data by the user and to facilitate the making of design changes is described.  The fuselage analysis is based on ring
and shell equations but the procedure is formulated to be analogous to that used for plates in order to take advantage
of the existing code in ELAPS.  Connector springs are used to couple the wing and fuselage models.  
   Typical fuselage analysis results are presented for two analytical models.  Results for a ring-stiffened cylinder
model are compared with results from conventional finite-element analyses to assess the accuracy of this new
analysis capability.  The connection of plate and ring segments is demonstrated using a second model that is
representative of the wing structure for a channel-wing aircraft configuration.

   Nomenclature

b, h, z = dimensions of rectangular portion of ring   
   cross-section [see Fig. 3]

E = modulus of elasticity
ks = spring stiffness
Q = lamina stiffness matrix
r = radius of shell reference surface
R1, R2 = radii of curvature in meridional and    

   circumferential directions
s = meridional shell coordinate
t = thickness of cover skin layer
u,v,w = displacements in Cartesian coordinates
u v w, , = displacements in shell coordinates
x,y,z = Cartesian coordinates
δseg = deflection of segment at spring connection
εs = strain in meridional direction
εθ = strain in circumferential direction
εsθ = shear strain
____________________
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ϕ = angle between Cartesian and shell coordinates
ν = Poisson’s ratio
Ω = strain energy
θ = circumferential coordinate
(,) = denotes differentiation, e.g., w,x = dw/dx;

    w,xx = d2w/dx2

  Introduction

   During the conceptual design of aircraft, many
alternative configurations must be evaluated in
multidisciplinary design trades to determine the
characteristics of a candidate configuration which will
best meet specified measures of overall vehicle
performance and/or cost.  Airframe weight is the key
parameter that is required from the structures discipline.
The airframe should be lightweight but also have
sufficient strength and stiffness necessary to satisfy all
the requirements throughout the flight envelope.
General-purpose finite-element structural-analysis codes
are available to model and analyze the static and
dynamic response of airframes in great detail.  However,
such analyses often require several months to generate
the finite-element model and repetitive analyses can be
computationally expensive.  With the objective of
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reducing design-cycle time, equivalent plate
methodology1-4 has been developed and used for analysis
of aircraft wings and empennage structures during early
phases of design.  In order to model entire airframes,
similar capabilities are needed for modeling other
structural components.
   This paper describes a design-oriented analysis
capability for aircraft fuselage structures.  This new
capability has been implemented as an addition to the
existing wing analysis procedure in the Equivalent
Laminated Plate Solution (ELAPS) computer code5.
Thus, the wing and fuselage analyses are now combined
so that entire airframes can be modeled.    
   The paper focuses on the fuselage model definition,
the associated analytical formulation and the approach
used to couple the wing and fuselage analyses.  The
modeling approach used to minimize the amount of
preparation of input data by the user and to facilitate the
making of design changes is described.  The fuselage
analysis is based on ring and shell equations but the
procedure is formulated to be analogous to that used for
plates in order to take advantage of the existing code in
ELAPS.  Connector springs are used to couple the wing
and fuselage models.  
   Typical fuselage analysis results are presented for two
analytical models. Results for a ring-stiffened cylinder
model are compared with results from conventional
finite-element analyses to assess the accuracy of this
new analysis capability.  The connection of plate and
ring segments is demonstrated using a second model
that is representative of the wing structure for a channel-
wing aircraft configuration.

   Analytical Modeling  

   Fuselage structures are modeled as ring-stiffened shell
segments, typical of transport aircraft construction, as
shown in Fig. 1.  Each shell segment is used to
represent large regions of a fuselage and only a small
number of segments are typically used to model an
entire fuselage. These segments have circular cross
sections with a radius that varies along the length to
represent area ruling and the necking down in the fore
and aft regions of a typical vehicle.  The skin of the
shell segments are composed of layers of orthotropic
material.  The properties of the layers can be defined to
represent composite laminates or a smeared
representation of longerons.  Fuselage frames are
modeled with rings having cross sections that are
composed of multiple rectangles.

   The shell segments are defined over quadrilateral
regions with boundary edges at constant values of x
along the length and at constant values of θ in the
circumferential direction as shown in Fig. 2a.
Segments for half airplane models, that are symmetric
about the x-z plane, are often defined with θ extending
from -π/2 to +π/2.  An appropriate set of boundary
conditions must be applied at θ = -π/2 and at θ = +π/2.
Small segments with a negative thickness can be
superimposed on these larger segments to represent
cutouts such as doors or windows.  The radius of the
reference surface for the shell is defined by a polynomial
function along the length of the segment.

  r x r r x r x r x r xn
n( ) = + + + + +0 1 2

2
3

3 L            (1)

 The skin of the shell segments consist of orthotropic
layers with the thickness of each layer being defined
independently by a two-dimensional polynomial
function along the length and around the circumference.

  t x t t x t x t t xk mn
m n( , )θ θ θ= + + + + +00 10 20

2
01 L     (2)

Orientation of the stiffness properties and corresponding
thickness are specified for each layer, and the
orientations and thicknesses can be different in different
shell segments.
Fuselage frames are modeled with rings having cross
sections that are defined using up to three rectangles so
that a variety of shapes (e.g., zee, tee, cee) can be
represented.  An example of a zee cross section is
shown in figure 3 that indicates the width, b, height, h,
and the distance of the centroid from the shell reference
surface, z, must be defined for each rectangle in the
cross section.  The dimensions of cross sections at each
end of a shell segment must be defined along with the
total number of frames, N, to be equally spaced along
the length of the segment.  At frames between the ends,
the cross sectional dimensions are interpolated using a
linear variation between dimensions of rectangles that
are defined at the ends of a shell segment.  During the
analysis, the bending and extensional stiffnesses of
these frames are smeared over the surface of the shell.
This smeared approximation provides improved
computational efficiency.   Individual, discrete frames
can be modeled using additional narrow shell segments
with a width equal to the width of the discrete frame
shell.  The behavior of discrete frames will be closely
approximated when the frame stiffnesses are smeared
over these narrow segments.  The option of using
discrete or smeared modeling can be used to trade
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accuracy for computational speed, a desirable feature of
design-oriented analysis methods.  

   Analysis Procedure  

   The analysis procedure is based on the Ritz method in
which the deflection of the structure is described by
assumed polynomial displacement functions.  Axial,
tangential and radial (u, v, w) deflections are defined in
terms of functions in the axial, x, and circumferential,
θ, coordinates on the surface of a shell segment as
shown in Fig. 2b.  Note that the radial deflection is
defined to be normal to the x-axis rather than the
conventional definition of being normal to the shell
surface.  This definition of radial deflection facilitates
the coupling of shell segments to plate segments.  The
assumed displacement functions are substituted into the
expression for total energy.  This equation is
differentiated with respect to each of the displacement
function coefficients to minimize the total energy.  A
set of linear, simultaneous equations is produced that
can be solved for the desired set of unknown polynomial
coefficients.  These coefficients are used to calculate
deflections, strains and stresses at a user specified grid of
points over the surface of the shell segments.
   The total energy consists of the strain energy of the
structure and the virtual work associated with the
applied loads and assumed displacement functions.  The
strain energy of the structure has contributions from the
shell segments and the frames.  Only the membrane
energy of the shell is used while energies associated
with both extension and bending are included for the
ring frame.  The strain equations are derived from ring
and shell theory.

  Strain Energy of Shell Segments  
   The membrane strain energy of a shell segment is
given as

Ωshell
T

area Q dA= ∫∫1 2 { } [ ]{ }ε ε                   (3)

where
{ } { }ε ε ε εθ θ

T
s s=            (4)

Strain-displacement relations and the differential area in
terms of conventional shell coordinates are given in
Ref. 6 as

εs su w R= +, 1                    (5)

εθ θ= + +v r ur r w Rs, , 2            (6)

ε θ θs s su r v vr r= + −, , ,                     (7)

and dA rd ds= θ            (8)

where θ is the circumferential coordinate and s is the
meridional coordinate.  The displacement w   is normal
to the shell reference surface and the displacements u
and v  are in the meridional and circumferential
directions respectively.  In order to make the fuselage
shell formulation be analogous to the plate formulation
for wings, quantities in these strain-displacement
equations are transformed to the Cartesian coordinate
system shown in Fig. 2b.  Formulating energy
expression in this form, facilitates the coupling of the
shell and plate segments.  The quantities in the
expression for strain energy after transformation are

εs x x x xu r w s= +( ) ( ), , , ,
2

                 (9)

εθ θ= +( )v w r,                 (10)

ε θ θ θs x x x xu r v rv r w rs= − + +( ) ( ), , , , , ,      (11)

and dA rs d dxx= , θ          (12)

where s rx x, ,= +1 2             (13)

The details of the transformation procedure are given in
Appendix A.

  Strain Energy of Ring Frames  
   Only in-plane displacements of the ring frames are
included in this formulation; out-of-plane bending and
torsion are neglected.  The general equations for the
strain energy of a ring are given in Ref. 6 in terms of
the same Cartesian coordinate system that is used for
the shell in the preceding subsection.  Therefore, the in-
plane contributions are taken directly from these
equations and are written in the nomenclature of this
paper as

Ωring rA r rE rdAd= ∫ ∫1 2 θ ε ε θ{ }[ ]{ }          (14)

where ε θ θ θθr rv rw zv zw r= + + −( ), , , 2             (15)

and A refers to the cross section of the ring.  The first
and second terms in Eq. (15) give the membrane strain
in the ring and are seen to be the same as for the shell
as given in Eq. (10).  The third and fourth terms in Eq.
(15) give the bending strain in the ring.  In the present
formulation, it is assumed that the cross section of each
ring is constant around the circumference.  Therefore,
the properties of the ring cross section given by the
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integrals z dA ii
A∫ =; , ,0 1 2 that occur in Eq. (14) are

not a function of θ  and can be readily evaluated and
summed for the rectangles used to define a ring cross
section.

  Implementation of Method
   A goal in this development was to make the
formulation of the new, design-oriented fuselage
analysis method analogous to the formulation that was
used in the equivalent plate analysis method for wings.
This approach facilitates the implementation of the two
analyses in a single version of the ELAPS code.  In
particular, procedures that were developed for plate
analysis are also used in shell analysis.  One example is
the use of the special library of subroutines that exists
in ELAPS to perform the operations of addition,
subtraction, multiplication, differentiation and
integration of the terms in the high-order, lengthy
polynomial expressions that result when geometrical
functions and assumed displacement functions are
substituted into the energy equation.  Use of these
subroutines allow all operations to be performed in an
exact, closed-form manner and result in a
straightforward, simplified coding implementation of
these lengthy, tedious polynomial expressions.
However, in order to use these special subroutines, all
expressions must be in polynomial form.  
   Unlike the strains for plates, the strains for shells and
rings contain terms that cannot be expressed in standard
polynomial form.  Functions of the shell radius, r, that
is expressed as a polynomial in Eq. (1), are contained in
the denominator of expressions for the shell and ring
strains, Eqs. (9), (10), (11) and (15).  In addition, the
quantity s,x in Eq. (13) is the square root of a
polynomial that cannot be manipulated by the special
set of subroutines.  The terms 1/r and s,x are both
functions of the shell radius.  In order to be able to
utilize the advantages of the special subroutines,
quantities containing these terms are approximated by
standard polynomial functions.  Each quantity
containing these terms is evaluated at a set of points
along the length of a fuselage segment and a least-
squares fit is made through these points to obtain a
polynomial that approximates the original geometric
quantity.  The resulting polynomials can be combined
with other polynomials in the strain energy equations
using operators in the special subroutines.   This
procedure allows closed-form integration to be used to
form sets of integral tables that are subsequently used to
assemble the stiffness matrix for the structural model.
This procedure has been demonstrated to be very

computationally efficient in applications of the
equivalent-plate analysis.  This approximation approach
was readily implemented in the ELAPS code and offered
efficiency advantages over the conventional approach of
using Gaussian integration that was used to implement
similar ring-frame energy equations in Ref. 7.

   Connecting Structural Segments  
   Spring elements are used to connect the structural
segments that comprise an airframe model.  Use of such
springs to connect adjacent shell elements along their
common circumferential boundaries is illustrated in Fig.
4.  A typical connection is shown by the springs that
are located along circumferential boundaries of the shell
segment between the second and fourth rings in the
illustrative figure.  In addition, the springs that are
shown located along the longitudinal boundary are used
to impose appropriate boundary conditions at the plane
of symmetry.  Translational springs in the x, y, and z
directions and a rotational spring about the x-axis can be
defined at each location indicated by the symbols.  The
rotational springs are used to connect the circumferential
bending deformation that is governed by ring frame
stiffnesses of adjacent shell segments.  The strain
energy of such connectors between segment A and
segment B is given by

Ωspring s segA segBk= −( )1 2
2

δ δ          (16)

where spring stiffnesses, ks, are defined for each of the
three translations and the rotation.  In the displacement
quantities, δsegA and δsegB, the radial and circumferential
displacements of a shell must be transformed to
displacements in the y and z directions before
calculation of the spring’s contribution to the global
stiffness matrix.  When the springs are used to imposed
boundary conditions on a model, the displacements for
one of the segments is taken to have the value of zero.
These connector springs are also used to connect
adjacent plate segments by locating translations springs
at the upper and lower surfaces of their common
boundaries.   
   Finally, these connector springs are used to connect
shell segments to plate segments.  Typical shell-to-
plate connections are shown in Fig. 4.  The connector
springs do not have to be located at any particular
points along the intersection of two segments, since
both the model geometry and the assumed displacements
are defined as continuous functions over the segments.
Individual springs can be defined as well as a set of
evenly-spaced springs along a segment edge.  This
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method of connecting segments provides significant
versatility for constructing models and facilitates
making design changes such as shifting the longitudinal
location of the wing/body intersection.  Such
definitions and modifications are time-consuming and
difficult to automate when using conventional finite-
element methods.

   Applications and Results  

   The fuselage structural analysis procedure will be
applied to examples that illustrate various features of
the new method. Two examples are presented, (1) a
ring-stiffened cantilever cylinder that is used to assess
the accuracy of the fuselage formulation and (2) a plate-
ring model that is used to demonstrate the connection of
plate and ring segments.

   Cantilever Cylinder Model  
   An example application of a ring-stiffened cantilever
cylinder that has been studied in Refs. 8 and 9 is shown
in Fig. 5.  The cylinder has a length of 60.0 in., radius
of 15.0 in. and a wall thickness of 0.032 in.  Four
stiffening rings are evenly spaced along the length of
the cylinder.  These rings have a rectangular cross-
section with a height of 0.78 in. and a width of 1.00 in.
The material in both the cylinder wall and rings is
aluminum with a Young’s modulus of E = 10.6 x 106

psi and a Poisson’s ratio of ν  = 0.33.  The cylinder is
modeled with a single shell segment that spans the
entire length.  Only half of the cylinder is modeled since
symmetry boundary conditions are applied by
constraining deflections in the y-direction and rotations
about the x-axis along shell edges in the x-z plane, at θ
= -90o and at θ = +90o.  The four rings are modeled as
discrete members by smearing their stiffness properties
over 1.0 in. wide shell segments at each of the ring
locations.

   Cantilever Cylinder Results  
   A static analysis is performed with  a radial point load
of 1000 lb. in the positive z-direction at the free end.
The deformed shapes of rings 1-3 from the ELAPS
analysis are shown in Fig. 6.  The displacement values
were multiplied by a factor of 40 for illustrative
purposes.  The ring-stiffened cylinder was also analyzed
using a conventional finite-element method10.  In Table
1, numerical values of radial displacements at θ = -90o,
0o, and +90o on the free end that are calculated using the
ELAPS model are compared with results from the

finite-element model (FEM).  A maximum power of 8
was used on the x and θ terms in the assumed
displacement functions for u, v and w in the ELAPS
analysis.  Results are shown for three different levels of
FEM modeling refinement.  The entire circumference of
the cylinder was represented in the FEM, not a
symmetric half-model.  The cylinder wall was modeled
using a single row of finite elements between the rings.
The least refined model, FEM 1, had 12 joints around
the circumference and four constant strain triangles were
used for each skin element as in Ref. 8.  Linear strain
quadrilateral elements were used to model the cylinder
wall in FEM 2 and FEM 3 with the number of
circumferential joints increased to 24 in FEM 3.
Agreement between the displacements from the most
refined FEM model , FEM 3, and displacements from
ELAPS is within 5 percent.
   The rings in the finite-element models are modeled
with straight beam elements between joints in the
circumferential direction.  A comparison of the
moments in ring 1 from the ELAPS and FEM 3
analyses are shown in Fig. 7.  Similar results for rings
2 and 3 are shown in Fig. 8.  The curves for moments
from ELAPS are in good agreement with the curves
from the FEM analysis.  The largest differences occur
on the ELAPS segment boundaries at θ = -90o and θ =
+90o.  The difference at θ = -90o on ring 2 is the largest.
It appears that the displacement functions that span the
entire half model used by ELAPS give a good
representation of the overall moments but provide less
accuracy in localized areas.   Comparisons of the
distribution of shear stresses in the cylinder wall from
ELAPS and the FEM 3 analyses are shown in Figs. 9
and 10.  These shear stresses are evaluated mid-way
between rings 1 and 2 for Fig. 9 and mid-way between
rings 2 and 3 in Fig. 10.  There is good overall
agreement in the curves from both methods.
   The comparisons of displacements, moments and
shear stresses for the ring-stiffened cylinder indicate that
the new design-oriented analysis method in ELAPS
provides adequate accuracy  for use during conceptual
design.

  Plate-Ring Model  
   The second example application is a plate-ring model
shown in Fig. 11.  A half-cylinder is connected to two
plates to demonstrate the connection of plate and ring
segments.  This relatively simple example is
representative of more general plate-shell connections
since the bending of plate segments are reacted by the
bending stiffness of the rings in a stiffened shell.  The
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plates are connected to the ring by sets of connecting
springs shown as the large, solid circular symbols.
Clamped boundary conditions are imposed at the inner
edge of the inboard plate.  The thicknesses of the upper
and lower skins of the plates and the inner and outer
flanges of the ring have a constant value of 0.20 inches.
The material properties of aluminum from the previous
example are used for analysis purposes.  The
dimensions of this plate-ring structure are constant in
the direction normal to the cross-section shown in Fig.
11.  Therefore, only a strip of unit width is modeled.  
   Although the geometry of this model has been
simplified for illustrative purposes, it is still somewhat
representative of a semi-span wing model for a channel-
wing aircraft configuration.  Channel-wing aircraft have
been investigated because of their potential benefits for
short take-off and landing operations11.  An engine is
mounted inside of the semi-circle.  The high velocity of
the airflow in the semi-circular region that is produced
by the engine generates increased lift over that portion
of the wing at low velocities of the aircraft.  

  Plate-Ring Results  
   A static analysis is performed with a 1.0 psi upward
pressure load applied to the outboard plate segment for
illustrative purposes.  The vertical deflection of the
plate-ring model is shown as a function of semispan
location in Fig. 12.  The deflection of the plate-ring
model shown by the dashed curve is compared to the
deflection of a cantilever plate model shown by the solid
curve.  The cantilever plate has an overall length of
250.0 in. and a constant depth of 10.0 in.  The ELAPS
model used to generate the solid curve was created by
replacing the semi-circular ring segment with a 100.0
inch long plate segment.  The deflection of the plate-
ring model is greater that the cantilever plate model
because the flexibility of the 100.0 in. diameter ring
segment is greater than that of a 100.0 in. long plate
segment.
   The tensile stress in the lower cover of the plate
segments and outer flange of the ring segment is shown
as a function of semispan location in Fig. 13.  Again,
the stresses for the plate-ring model are compared with
stresses for the cantilever plate model.  The stresses for
both the inboard and the outboard plate segments are the
same for both models since the bending moments from
the applied loads are the same.  However, the stresses in
the outer flange of the ring differs from the stresses in
the lower skin of the cantilever plate model.  This
difference is caused by the manner in which the pressure
loading that is applied to the outer plate segment is

carried by the ring segment and the corresponding plate
segment in the cantilever plate model.  Tensile stresses
in lower surface of the cantilever plate model is the
result of only the applied moment on the plate cross-
section that is produced by the applied pressure loading.
Stresses in the outer flange of the ring segment is the
result of the applied moment and a vertical component
of force.  This vertical component of force increases the
outer flange stress in the outer 90o portion of the ring
and decreases the stress in the inner 90o portion.

   Concluding Remarks  

   A design-oriented analysis capability for aircraft
fuselage structures is described.  The analytical model is
defined using polynomial functions that minimize the
amount of input data preparation and also facilitate any
subsequent modifications that are made to the model
during design.  The analysis is based on the Ritz
method and uses strain-energy equations from ring and
shell theory.  Example results are presented to indicate
that the accuracy of this new structural analysis method
is sufficient for use in conceptual design.  The use of
connector springs to couple plate segments and ring
segments is demonstrated.  The capability to couple
ring-stiffened shell segments with plate segments
within the ELAPS code provides a new design-oriented
tool for modeling and analyzing entire airframes.
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   Appendix A
  Shell Strain Coordinate Transformation  

   The detailed steps of transforming the shell strains in
shell coordinates of Eqs. (5)-(7) to strains in Cartesian
coordinates are presented in this Appendix.  First, the
displacements u , v  and w  in shell coordinates and the
displacements u, v, and w in Cartesian coordinates are
considered.  The circumferential displacements are the
same in both coordinate systems, i.e., v  = v.  The
remaining two sets of displacements are shown in the
following sketch.

ww

u

u

x

r

ϕ

The transformation equations between the two sets of
displacements are

u

w

u

w








=
−














cos sin

sin cos

ϕ ϕ
ϕ ϕ

         (A.1)

The trigonometric terms in Eq. (A.1)  can be converted
to differential form using the quantities shown in the
next sketch

ϕ

dx

dr

ds

u

u

with cosϕ = dx/ds = 1/s,x   
and sin ϕ = dr/ds = (dr/dx)/(ds/dx) = r,x /s,x.

Substituting Eqs. (A.1) in differential form into Eqs.
(5)-(7) gives

εs ss
s

s s ss
s

s sx
r

R
u x u r

x

R
w r w= −







+ + +





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,

, , ,
,

, ,
1 1

                    (A.2)

εθ
θ= −







+ + +




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x r

r

r

R
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v

r

r

r

x

R
ws s s s s, , , , , ,

2

2

2

        (A.3)

ε θ θ θs s s s sx u r v rv r w r= − + +( ), , , , , ,         (A.4)

Now, the derivatives of quantities, [  ], with respect to s
are expressed as derivatives with respect to x.

[ ] = [ ] = [ ] = [ ], , ,s x x

d

ds

d

dx

dx

ds
s               (A.5)

and

[ ] = [ ] = [ ] − [ ]− −,
,

, , , , ,ss
s

xx x x x xx

d

dx

dx

ds
s s s2 3          (A.6)

Next, the differential quantities in shell coordinates, s,x
and s,xx, are converted to differentials quantities in the
radial coordinate, r,x and r,xx, using the differential
relation from consideration of the preceding sketch

ds dx dr2 2 2= +                     (A.7)

or s rx x, ,2 21= +         (A.8)

then s rx x, ,= +1 2                     (A.9)

and s r r rxx x xx x, , , ,= +1 2       (A.10)

The shell curvatures, 1/R1 and 1/R2, in shell coordinates
can be expressed in Cartesian coordinates as

1

11 2
3

2R

r

r

xx

x

=
−

+( )
,

,
         (A.11)

and
1 1

2R r rs x

= =
cos

,

ϕ
      (A.12)

Substitution of Eqs. (A.5)-(A.12) into Eqs. (A.2)-(A.4)
gives the strain equations in Cartesian coordinates as
shown in Eqs. (9)-(11).  Note that values of zeros are
obtained when the coefficients for the u and w
displacements in Eq. (A.2) are evaluated.  Similarly, the
coefficient of the u displacement in Eq. (A.3) is found
to be equal to zero.
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Table 1.  Comparison of displacements

Model      Radial displacement of free end

θ = -90o θ = 0o θ = 90o

ELAPSa -0.2056 0.1177 -0.0671
FEM 1b -0.1903 0.1030 -0.0601
FEM 2c -0.1982 0.1086 -0.0644
FEM 3d -0.2037 0.1098 -0.0660

a The ELAPS model uses maximum power of 8 on x and θ in the displacement functions.
b  FEM 1 has 12 joints per ring and four constant strain triangles are used for each skin element.
c  FEM 2 has 12 joints per ring and linear strain quadrilateral elements are used for the skin.
d  FEM 3 has 24 joints per ring and linear strain quadrilateral elements are used for the skin.
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Fig. 1   Analytical modeling of fuselage structure.

(a)  Geometry definition

X

Y

Z

r(x,θ)

θ

t(x,θ)

u(x,θ) v(x,θ)

w(x,θ)
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Fig. 2   Shell segment definition.
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Fig. 4  Coupling of segments using connector springs.

Fig. 3  Fuselage frame definition.
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Fig. 5  Cantilevered ring-stiffened cylinder.

Fig. 6   Ring displacements.
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Fig. 8  Moments in ring 2 and ring 3.

Fig. 7  Moments in ring 1.
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Fig. 10  Shear stress between ring 2 and ring 3.

Fig. 9  Shear stress between ring 1 and ring 2.
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Fig. 11  Plate-ring model of channel wing structure.

Fig. 12  Vertical deflection of wing structures.

Fig. 13  Stress in lower cover skin.
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